
Meta-Classing & Super-Classing in Matisse

A Technical Brief

Matisse Software Inc.

© 2003 MATISSE SOFTWARE INC., ALL RIGHTS RESERVED. Matisse is a registered trademark of Matisse software
Inc. Other product or company names mentioned herein may be the trademarks of their respective owners.

Introduction
This technical brief explores a concept called Meta-Classing
and shows how to use this construct to create adaptive
code that can run on many different systems. To clarify, the
term adaptive code refers to code that will run unchanged,
and adapt to different data models.

Change Is the Only Constant
While this is an age-old cliché, every application program-
mer lives it, especially when creating a generic product that
can be customized for each user’s needs. Indeed, the pop-
ularity of object-oriented programming is owed to its ability
to use polymorphism to write adaptive code that applies to
many different object types, thereby reducing the cost of
maintenance in an ever-chang-
ing environment.

For example, consider the
case of an application vendor
for a CRM system. Ideally, this
vendor would like to have a
generic application that could
be customized to an industry
type, e.g., airlines, hotels, or
retail. Each of these industries
may have a distributor for the
software who would further
customize it for particular sub-
industries. Why? Because the
primary CRM concerns for a
tropical resort are very differ-
ent from those catering to
business travelers. Figure 1
shows a representation of this
chain.

So, how does the CRM vendor who is at the top of the food
chain have ANY hope of writing a package that is as appli-
cable for Maui Hilton as it is for Macy’s New York?
Software developers employ several strategies to achieve
this, depending on the particular tools they use.

• In a typical RDBMS-based design, there isn’t much help available for this.
Designers just design the tables with their “best effor ts,” and hope they did a
good job. Each new customer added requires a massive effor t to customize
the code for the new database design. The vendors typically try to make the
best of a bad situation by retaining a professional services team who charge
for the customization effor ts. Typically, the customization fees equal or exceed
the license fees for the product. VARs in each of the sub-industries also han-
dle some of the customization.

• ODBMS-based designs fare a little better in this respect. As new requirements
are added or existing requirements modified for each new customer, new
objects are added that inherit from, and override, existing attributes and meth-
ods. This results in a new schema being auto-generated by the transparent
persistence engine of the ODBMS. Thus, the advantage over RDBMS is that
the application does not have to be re-designed from scratch. However, mas-
sive amounts of new code must still be written. So while the results of cus-
tomization effor ts are better than with the RDBMS, the workload is roughly the
same.

In this brief, we’ll look at a new approach to object design,
based on the Matisse Meta-Class, that enables the devel-
opment of easily customizable applications.

Meta-Classes & Document-Centric
Applications
The example we will be using in this paper is derived from
a real live CRM application that has been designed at
Matisse Software Inc. Klover, a document-centric applica-
tion, integrates and classifies full-text documents, render-
ing them fully indexed and searchable. Some are customer
survey documents, either on paper or an e-form. Others are
emails from support centers. Still others are “Call
Verbatim” documents, which are a transcript of the conver-
sation between a customer and a sales or support repre-
sentative.

Generic CRM
Application

Hotel Retail

Resort Department
Store

Maui Hilton Macy’s NY

Industry Type

Sub-Type

Specific

Figure 1: Specializing a CRM application for a particular customer.

2

3

In the rest of this paper, we will examine the problem
posed by these polymorphic documents, focusing on the
fact that we do not know what new and unique types of
documents may be introduced in the future.

Meta-Class vs. Super-Class
Most Object programmers are, of course, familiar with the
concept of a Super-Class (which is the class from which
the current class inherits). The figure on the left shows the
standard UML representation of the Super-Class.

The base class is the Document and the two sub-classes
are CustomerSurvey and CallVerbatim…pretty standard OO
fare. However, while the concept of a Meta-Class may be
familiar to Python programmers, Java programmers may not
have encountered it.

Most of us know about objects being instances of a class.
What is less familiar is the concept of a class being an
instance of another class. When Class B is an instance of
Class A, then we say that Class A is a Meta-Class of Class
B.

Using the same example, the CustomerSurvey document
class and the CallVerbatim document class are now shown
as instances of a meta-class DocumentType, in addition to
being sub-classes of Document. In UML terminology, the
meta-class is sometimes referred to as a Stereotype.

A canonical difference between a super-class and a meta-
class is that attributes in the meta-class become static
instance variables in the class, and cannot be over-ridden
in the class. This is a much more object-oriented way to
create static variables. In the same way, methods attached
to the meta-class are static final methods in the instance
classes.

It is important to note that while the meta-class construct
is available in some programming languages (such as
Python), and in modeling languages, such as UML, it has
never before been available in the context of database
design, even among the various ODBMSs. Matisse is
unique in making this construct available.

Using Meta-Class to Create Customizable
Applications with Matisse

Static Class Variables
One immediate benefit of using a Meta-Class is to have an
object oriented way to have static variables in a class. For
example, if you need to tag document sub-types as being
printable or not, you would add a Boolean isPrintable attrib-
ute to DocumentType. Then, CustomerSurvey could have
the property set to True and the CallVerbatim could have
the property set to False.

Static variables are valuable in creating customizable appli-
cations because it gives the programmer a built-in way to
classify the classes that may be added later on, and to
have the appropriate code work with it correctly. For exam-
ple, if a new document type is added for a particular cus-
tomer, and its isPrintable is set to False, the code will not
attempt to print it.

Self-Adjusting Methods
While these static variables are cool, the real power behind
meta-classing is to use Java Reflection to create truly adap-
tive code.

Going back to our example, let’s say the programmer wants
to write a method, which will print ALL the documents in
the system, including ALL the printable fields in each docu-

Document

DocumentType

CustomerSurvey CallVerbatim

Document

CustomerSurvey CallVerbatim

Figure 2: A class can be an instance of another class.

ment, with a template that is specific to the document type
(a common requirement). This leads to the following
requirements:

• A Static String/VarChar() field associated with each document type, such as
CustomerSurvey, that dictates what the overall format of the printed output will
look like. This could, for example, store an HTML template to format the docu-
ment for printing.

• A static property for each text attribute of each of the Document sub-classes
that indicates whether this attribute is to be printed, and one for the user-
friendly name of the attribute for print purposes. For example, an attribute
called custComments may have an isPrintable tag = True, and a friendlyName
tag set to Additional Customer Comments.

The power of the meta-class is immediately obvious in this
example. We could use a meta-class for the text attributes
in addition to the meta-class for the Document classes.
Here is what you could do with Matisse:

Notice that we are using meta-classes in two ways: The
DocumentType meta-class (which inherits from MtClass)
gives us a clean, convenient way to have a static html tem-
plate string for each document type, and the KTextAtt meta-
class (which inherits from MtAttribute) gives us a clean,
convenient way to tag each text string with an isPrintable
boolean tag, and the friendlyName:String tag.

With this structure in place, we can readily see how the
programmer can write a truly adaptive printAllDocuments()
method, which does not have to be re-written or over-ridden
based on the types of documents that are added to the
system for a specific customer. Using Java Reflection, one
can discover all the printable fields, and be able to format
and print them according to the format specified by the
HTML template for the specific document type. If one must
alter the application because a new document type has to
be added for customers (e.g., CustomerEMail), simply
define the printable fields, give a friendly name to each,
and create an HTML template for the print output. The code
itself remains unchanged.

While it is possible to conceive of a scheme to achieve this
goal in the absence of meta-classes, it would most
assuredly be more complex, and less straightforward than
the method outlined here. For example, one would either

require the programmer to remember to define a new static
HTML template field for each document type added
(because it’s not automatically instantiated from a meta-
class), or create a new object for the HTML template that
has a relationship with the document class. The former is
error prone, and the latter adds to the application complexi-
ty. As for the text attributes, it gets even messier; one
must envision making each text attribute an array with the
other attributes attached – again, quite error prone. So
while it is always possible to write object-oriented code in a
procedural language (like C); it isn’t clean, and is much
more error prone.

Conclusion
In this brief we have introduced the reader to the motiva-
tion behind the use of meta-classes, and provided a high-
level example of how to use them to your advantage in writ-
ing applications that can survive the test of time and
change.

4

MtClass

DocumentType

htmlTemplate:String

MtAttribute

KTextAtt
isPrintable:bool

friendlyName:String

CustomerSurvey
(has a static

htmlTemplate:String
(has

custCommentfield)

custComment
(isPrintable = True)

(friendlyName =
“Additional Customer

Comments”)

Figure 3: Using metaclasses to write truly adaptive methods.

Matisse Software Inc.
www.matisse.com
433 Airport Blvd, suite 421
Burlingame, CA 94010
650-548-2581

Download a developer’s version of Matisse 6.0 at www.matisse.com

©2003 Matisse Software Inc. All rights reserved.

